The Flavoring Agent Dihydrocoumarin Reverses Epigenetic Silencing and Inhibits Sirtuin Deacetylases
نویسندگان
چکیده
Sirtuins are a family of phylogenetically conserved nicotinamide adenine dinucleotide-dependent deacetylases that have a firmly established role in aging. Using a simple Saccharomyces cerevisiae yeast heterochromatic derepression assay, we tested a number of environmental chemicals to address the possibility that humans are exposed to sirtuin inhibitors. Here we show that dihydrocoumarin (DHC), a compound found in Melilotus officinalis (sweet clover) that is commonly added to food and cosmetics, disrupted heterochromatic silencing and inhibited yeast Sir2p as well as human SIRT1 deacetylase activity. DHC exposure in the human TK6 lymphoblastoid cell line also caused concentration-dependent increases in p53 acetylation and cytotoxicity. Flow cytometric analysis to detect annexin V binding to phosphatidylserine demonstrated that DHC increased apoptosis more than 3-fold over controls. Thus, DHC inhibits both yeast Sir2p and human SIRT1 deacetylases and increases p53 acetylation and apoptosis, a phenotype associated with senescence and aging. These findings demonstrate that humans are potentially exposed to epigenetic toxicants that inhibit sirtuin deacetylases.
منابع مشابه
Cloning, chromosomal characterization and FISH mapping of the NAD(+)-dependent histone deacetylase gene sirtuin 5 in the mouse.
Sirtuin 5 (SIRT5) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, belonging to the silent information regulator 2 (Sir2) family of sirtuin histone deacetylases (sirtuins). The yeast Sir2 protein and its mammalian derivatives are important in epigenetic gene silencing, DNA repair and recombination, cell cycle, microtubule organization and in the regulation of aging. In mamma...
متن کاملIdentification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.
Sirtuins are a family of protein lysine deacetylases, which regulate gene silencing, metabolism, life span, and chromatin structure. Sirtuins utilize NAD(+) to deacetylate proteins, yielding O-acetyl-ADP-ribose (OAADPr) as a reaction product. The macrodomain is a ubiquitous protein module known to bind ADP-ribose derivatives, which diverged through evolution to support many different protein fu...
متن کاملEpigenetic therapy--a new development in pharmacology.
Epigenetics, heritable changes in gene expression that do not involve changes in DNA sequence, is known to be involved in disease. Two important epigenetic changes that are known to contribute to disease are abnormal methylation patterns of DNA and modifications of histones in chromatin. This review describes a new development in pharmacology, epigenetic therapy, which attempts to correct these...
متن کاملGenomic organization and localization of the NAD-dependent histone deacetylase gene sirtuin 3 (Sirt3) in the mouse.
Sirtuin 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, which belongs to the Silent information regulator 2 (Sir2) family of histone deacetylases (sirtuin HDACs). The yeast Sir2 protein and its mammalian derivatives play a central role in epigenetic gene silencing, DNA repair and recombination, cell-cycle, microtubule organization, and in the regulation of aging. ...
متن کاملAn RNA-Seq Transcriptome Analysis of Histone Modifiers and RNA Silencing Genes in Soybean during Floral Initiation Process
Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 1 شماره
صفحات -
تاریخ انتشار 2005